
Rust as a platform for IoT
Part of Course ID2201 at KTH (2021)

Yannik Sander <yannik@kth.se>

May 25, 2021

Contents
Introduction 1

Ubiquitous Computing and IoT 1
Introduction to the character of

ubiquitous computing . . 1
The Internet of Things 3

Rust 4

The Rust Ecosystem for IoT 5
Rust on Microcontrollers 5

Tools 5
Abstraction layers 5
Drivers 6
Notable Mentions 6

Leaving Microcontrollers 7
Rust on the Edge 7

Rust as a platform 7
Today 7

The good 7
The bad 8
The ugly 9

In the future 9
Rust Foundation 9
Embedded-WG 9
Ferrous 9
Libraries/Tools 9

Conclusion 10

References 10

Introduction
The IoT and Ubiquitous Computing already
makes for a large share of software being writ-
ten today. To prove secure writing such soft-
ware should be ergonomic while staying perfor-

mant and efficient, the potential for human er-
ror should be minimized.

Rust is a young programming language with a
lot of promises, including being a viable plat-
form for IoT of Ubiquitous computing. This es-
say will introduce Ubiquitous Computing and
IoT, then, draw a picture of the current Rust
ecosystem relevant for these fields and finally
analyze how well this ecosystem can provide
for the demands of the field.

Ubiquitous Computing and IoT
Introduction to the character of ubiqui-
tous computing

The notion of Ubiquitous Computing, often and
in the following simply referred to as Ubicomp,
has been established by Mark Weiser in his 1991
paper envisioning “The Computer for the 21st
Century”[1]. In a time where computing was
visible, immobile and rear compared to today’s
standards, Weiser spoke of a “disappearance”
of technology. Surely, he did not speak about a
decrease in computing, but the opposite. The
disappearance was about the obvious presence
of said technology. Weiser predicted a world
where computing is omnipresent – ubiquitous –
“weaved into everyday life.” On the one hand, it
was about the mobility of computers, i.e. being
able to take computing everywhere. Yet, this
doesn’t cover it completely! Indeed, it was the
unintrusive enhancement of people’s life that
defined Ubicomp.

In the modern day, Ubicomp has become an
important part of human-computer interaction
(HCI) implementation and research. Especially
being aware of the user’s context and acting

1

upon that is an important aspect of Ubicomp
relevant to HCI and carrying numerous oppor-
tunities for future advancements in comput-
ing [2]. There have been great developments
in technology since Weiser formulated the con-
cept of Ubicomp that enable many of his ideas.
Poppe et.al. [3] pointed out critical develop-
ments in this regard.:

Context Awareness and Pro-Activeness
Multitudes of sensors both owned (or even
worn) by the user or present in the public do-
main allow the greater possibility to take user
context into account. This includes classify-
ing user’s actions, emotions, health and loca-
tion and allows them to provide services re-
lated to that. This might be sports tracking
e.g. analytics and recommendations in tennis
[4] or granting access to public transport with-
out any interaction, enabled by face detection
[5]. Further, context awareness empowers ser-
vices to be gradually more proactive, likewise
reducing the amount of interaction required by
a user, although “mixed-initiative” is said to be
more appropriate to HCI. Siri [6] and Google
Assistant [7] are examples of such context-
sensitive, mixed-initiative services. They pro-
vide information when they are queried by a
user, most notably facilitating non-physical in-
teraction with distributed devices (i.e. through
voice commands handled by a supported client
device). They might also present information
on their own, based on context and need.

Adaptability Need is interesting on its own.
It might mean external factors such as emer-
gency warnings, but often employs a different
concept important to Ubiquitous computing,
namely, adaptability. Evers et.al.[8] claim that
“future computing systems must adjust to the
user’s situations, habits, and intentions.” Pro-
activeness, as mentioned above, is much more
useful, if not only useful, if it supports and
anticipates the user’s intentions and develops
with their behaviour. As such, it’s imperative
to not only collect user context but also user
feedback on the actions anticipated.

Intelligence Tangential to the ability to
learn from user feedback is the perceived in-
telligence of a Ubiquitous system. As humans,
we are used to expecting decent levels of intelli-
gence in natural interaction with each other. In
effect, to be perceived as a natural part of one’s
environment, rather than being a tool, ubiqui-
tous technology needs to show intelligence too.
Adaptivity and pro-activeness, as discussed be-
fore, are some aspects of this. Additionally one
might ask for additional criteria such as an abil-
ity to reflect and anticipate consequences, im-
prove their behaviour and show diverse strate-
gies as well as natural social competence.

Speaking of intelligence, one can discern dif-
ferent types of intelligence by the agent that
shows it. Things or machines that display in-
telligence are typically considered robots. User
software becomes a (software) agent or soft-
bot. While softbots (for instance the afore-
mentioned personal agents) can already be inte-
grated into the environment and provide non-
physical interaction, going a step further one
can also separately distinguish smart environ-
ments. These are often referred to as imple-
mentations of ambient intelligence. We see in-
telligence embedded into objects in our environ-
ment [9] such as appliances, thermostats and
similar devices. Research might go even further
exploring rooms, that sense the user’s presence,
can store and prepare different states for differ-
ent users [10, p. 21] and be augmented virtually
[1].

In fact, augmented reality was also envisioned
by Weiser [1] as part of a ubiquitously comput-
ing future. Several projects are pushing the
idea of AR implemented in projects of vary-
ing comfort in form of the Google Glasses and
Microsoft Holo Lens or smartphone-based solu-
tions like Google Lens.

Summary of the Dimensions of Ubicomp
Summarizing the nature of Ubiquitous comput-
ing one can distinguish advances on different di-
mensions. First, implementations of Ubicomp
might have varying distance to the user. It can
be public domain face detection based access
control, or intelligent rooms. Closer to the user

2

there are wearables or smart fabrics. In recent
days project like Neuralink [11] picture a fu-
ture with even closer integration of computing.
Second, different grades of artificial intelligence
are shown. Systems that interact close to the
user are supposed to do so naturally, i.e. in-
telligently. The less direct the interaction the
less the requirement for pro-activeness, talking
about face detection as an example. Weiser
himself coined another dimension, namely size:

“Inch scale, foot scale and yard scale
devices.”

Computing nowadays can be as big or bigger
than smart screens, down to tablet and smart-
phone/smartwatch size. Yet, even smaller com-
puting is present in our environment. Credit
cards, contactless keys, or glucose meters are
examples of such smaller and certainly much
more transparent areas of computation with
medical devices reaching even greater records
in smallness.

So far, Ubicomp has been mainly described as
a form of HCI, providing ways for users to
interact more or less directly with a greater
service. Ubicomp itself while popular in aca-
demics (listing more than 1.5M search results
on Google Scholar1) hasn’t become nearly as
present in the industry and everyday life as a
term. Possibly due to its nature being more of
a concept without clear and concrete borders
as seen above. Instead, the term Internet of
Things (IoT) experienced a phase of ubiquity
in industry and consumer electronics. What is
IoT then?

The Internet of Things

While Ubicomp as a concept seems to concen-
trate more on the connection with humans and
the possibilities it offers to them, IoT has a
greater impact as a marketing term for con-
nected devices. In a way, it’s a more practical
term than Ubicomp. Yet, that does not mean it
is a more concrete one. Applications of IoT in-
clude Home Automatization, Smart Cities, Me-
dia Consumption and Transportation to name

1May 4th, 2021

a few many of which are also part of Ubicomp.
The difference to Ubicomp is that IoT describes
actual systems/networks of devices that work
together and communicate, as well as their pro-
tocols and standards.

As shown in an article in Business Horizons [12]
numerous artefacts are part of the IoT. It is the
nature of a system that qualifies it as part of
the IoT. Data is produced at one end by wire-
lessly connected sensors, send over a network,
processed by specific middleware running in the
cloud and driving IoT based applications.

Only considering consumer applications the
market for IoT is enormous. Home automation
for example has evolved rapidly over the last
years, with multiple applications by competing
vendors reaching from lighting overheating to
property security and more. The great inter-
est in this market led to a substantial fragmen-
tation of the market on nearly every layer of
IoT. In the pursuit of standard multiple com-
munication protocols evolved. Nowadays, Zig-
bee, Z-Wave, Bluetooth LE and WiFi are the
dominant standards to build networks[13]. Yet,
device protocols often remain largely incompat-
ible still.

If building on open standards, the entrance to
IoT has become quite simple. Hubs provide
an interface to compatible connected devices or
connect them to cloud-based services. Yet there
is little standardization around the interaction
between different devices’ specially if coming
from different vendors.

Looking at industrial contexts, an apparent dif-
ference is the predominance of sensors at the
bottom of the network becomes apparent. IIoT
is characterized by a multitude of wirelessly con-
nected actuators and sensors [14]. Unsurpris-
ingly, IIoT generates a lot of data, which needs
to be stored and processes or analyzed[15]. This
fact strongly motivates cloud computing or
even more immediate processing at the edge of
the network. [16]. Additionally, the uniqueness
of many applications implies that there are even
incompatibilities between systems than in the
consumer market.

3

To summarize, IoT consists of three main el-
ements each of which can vary in complex-
ity based on the application as crystallized by
Jayavardhana Gubbi in a 2013 paper [17].

1. Hardware is the common term for sen-
sors, actuators and communication drivers

2. Middleware provides intermediate ana-
lytics and data storage

3. Presentation conveys the findings to the
end-user

One might additionally include Software, es-
pecially protocols, in the list. In the following,
this essay focuses on software related to the first
two points.

Rust
Rust is a relatively modern programming lan-
guage that was first introduced in 2010 by
Mozilla as a basis for their experimental
browser engine Servo[18] parts of which are now
driving the Firefox Browser[19]. Its trifecta
of speed, safety and concurrency caught peo-
ples interest early on. Since the beginning rust
strived to provide greater safety through an ad-
vanced type system. By design, Rust disallows
concurrent mutable access to the same data.
Instead, it employs the concepts of data own-
ership and borrowing. At compile-time, Rust
can resolve how long references are used and
when they are cleared up. In effect, (modern)
Rust does not implement a garbage collector.
This and the fact that it is compiled to native
code through LLVM put it in the same category
as other unmanaged languages such as C/C++
and account for Rust’s performance. The first
stable version of Rust was released in 2015[20].
Since then public interest grew starkly, due to
its promises.

By now, Rust has been voted the “most-
loved” language since 2016 by developers on
StackOverflows yearly survey [21]. Its today’s
most convincing features are summarized by
Jake Goulding[22] in a blog post from Jan-
uary 2020. Firstly, its versatile and ergonomic
type system enables very practical safety mea-
sures, for example, replacing null pointers
for more expressive and safe Option<T> types

and enforcing the handling of errors through
a Result<Error, T>. Additionally, these are
also examples of Rust’s capability of algebraic
data types. The aforementioned garbage col-
lection model – or the lack thereof – is as well
highly appreciated by users of the language as
it decreases the applications memory footprint
dramatically. The possibility of safe direct
memory access has likewise driven Rust to be
an aspiring candidate for embedded{@} devices
as well as recently becoming an officially sup-
ported option for Linux kernel module develop-
ment[23], not at last because sticking to Rust’s
compiler enforced rules drastically reduces the
possibility of segfaults. Segfaults, typically oc-
curring when accessing invalid memory, are by
default prevented by Rust’s memory design.

Additionally to the language design, Rust has
built a thriving ecosystem. Its standard build
tool and package manager Cargo[24] is the piv-
oting point of this ecosystem. Using cargo
one can easily manage dependencies, config fea-
ture flags, run tests and much more. It also
offers great extensibility through custom com-
mands and built-in integrability with IDEs [25].
Cargo links in and provides tools for publish-
ing libraries on its package library crates.io[26].
These libraries referred to as crates are consid-
ered to be one of Rust’s most important fea-
tures on their own. Traditional languages such
as C/C++ do not have any standard package
manager, libraries are typically installed as pre-
compiled binaries that need to be linked at
compile time or runtime in case of shared ob-
jects. This requires the developer to include
header files that are only resolved using a basic
preprocessor, install these libraries separately
and track/require them using third party tool-
ing with little control over the actual version
being used leaving many security issues to be
dealt with by the user of the software and
OS maintainers. C++ recently added support
for modules[27] solving some problems related
to header files but remains fragmented in gen-
eral. Rust got inspired by more modern and
ergonomic solutions of more recent languages
such as NPM[28].

4

https://crates.io

The Rust Ecosystem for IoT
In the introduction, Rust’s ecosystem was out-
lined. Focusing on IoT one needs to take a
deeper look into the accompanying tools and li-
braries. This essay will introduce key technolo-
gies and concepts that enable the development
of IoT devices and related edge computing.

When speaking of IoT ARM is by far the lead-
ing manufacturer of Chipsets used at the edge
of the IoT[29] and embedded devices such as
sensors. As such, to be a viable option to cover
the IoT space as a language, support for ARM-
based processors is imperative! Hence special
focus will lie on ARM support in Rust.

Rust on Microcontrollers
Tools

A major component of the ecosystem of a pro-
gramming language are tools that simplify or
automate the development processes. These
processes can become highly complex even for
rather simple projects. For instance program-
ming, a common microchip, requires a debug-
ger, a connector to the on-chip debugger and
the programmer and the build tool to work
together. The latter also needs to be config-
ured for the programmed chip. Several tools
that have been developed try to shrink the as-
sociated learning curve and strive to allow for
greater productivity quicker.

Being based on LLVM Rust supports a mul-
titude of platforms [30] including many ARM
platforms. Cargo complements this by offering
an interface to cross-compile to foreign archi-
tectures. Additionally, rustup[31] provides an
interface to easily acquire toolchains for these
architectures and simplifies keeping track of
the fast-paced releases of the Rust language.
Combining these tools, cross[32] has been de-
veloped by the rust-embedded working group
which uses isolated docker containers to mini-
mize the efforts required and possible failures of
setting up a development environment by pro-
viding a managed prepackaged solution. With
this running and testing code for different ar-
chitectures becomes as easy as

$ cross test \
--target mips64-unknown-linux-gnuabi64

Targeting microcontrollers, in particular, the
knurling project [33] develops tools that
make embedded development more seamless.
probe-run is a project that integrates down-
loading binaries to controllers, and running
code, as well as connecting debuggers with
cargo and can therefore be easily integrated
with IDE’s. defmt significantly reduces re-
source overhead of logging on microchips and
has been found to offer a highly integrated de-
bug process [34].

Abstraction layers

Speaking about abstraction layers one must
first understand why they are needed. Pro-
gramming microcontrollers is flooded with
hardware-level interaction, unsurprisingly.
While rust is capable of doing these accesses,
in many cases some of Rusts safety measures
need to be disabled. While more is possible
in these unsafe environments, obviously one
strives to reduce the use of unsafe. Besides
safety, ergonomics and compatibility are more
reasons to ask for abstractions. Rust is known
for its capabilities to bring these virtues to its
users in other areas already due to expressive
Generics and its trait system. In the context
of embedded programming, this has enabled
people to create various levels of abstractions
on top of the lowest levels of interaction with
the hardware.

Accessing the hardware Peripherals on mi-
crocontrollers are configured through so-called
memory-mapped registers. Manipulating the
state of these registers changes how the exter-
nal connectors to the chip behave, whether they
are inputs or outputs, digital or analogue. Also,
internal structures can be controlled this way,
e.g. timers can be set and reacted upon. Unfor-
tunately, there is no common interface to these
registers not only due to the number of differ-
ent manufacturers but also different chip design
and application.

While configuration and layout differ, it does

5

not do so undocumented. In fact for long SVD
files [35] are being made available by manufac-
turers describing the chip layout formally. In
Rust, this is made use of to create so-called pe-
ripheral access crates (PAC). Using a svd2rust
[36] one can generate a rust library that im-
plements a safe interface to all of the speci-
fied registers including context-based functions,
such as being able to write or read from pins, or
start timers using a method rather than setting
bits manually.

Abstracting hardware functions PACs do
a great job making raw hardware accessible by
Rust in an automated and safe way. Building
on top of this, one might perform standard op-
erations such as communicating to peripherals
connect to USB, enable timers and so on. While
building this functionality from the ground up
based on peripheral access, a safer and more
portable solution is building on a shared ab-
straction. Such an abstraction is provided by
the embedded_hal[37] crate.

The functionality provided by embedded_hal
fulfils some important requirements:

1. It is independent of any specific chip
2. Does not make restricting assumptions

about how it is used on a specific chip
3. Provides low-cost abstractions that are

compassable into higher-order abstractions
(note that embedded_hal is still a very low-
level abstraction)

4. Stemming from the previous point: Offers
sufficient freedom and capabilities to base
device-independent drivers upon.

Note, that embedded_hal does not implement
most of the functionality, but defines interfaces
that are eventually implemented for a specific
chip or family of devices.

Drivers

Apart from accessing mere hardware, the most
important aspect of embedded development is,
as in non-embedded scenarios, processing data,
and providing functionality. In the context

of IoT data is typically produced by the pe-
riphery, and communicated over some network
channel, it is still the internet of things. En-
abling this, one finds themselves at a gap. So
far, the discussed abstractions merely provide
hardware access. Yet, communication, in par-
ticular, requires conformity to often complex
protocols (i.e. IEEE802.11/WLAN[38]). Imple-
mentations for these protocols readily exist in
C, less so in Rust, often because the modems
are using more niche platforms, to begin with.
Instead of reimplementing the existing C imple-
mentation for those modems, Rust focuses on
offloading this functionality. Offloading means
to employ a second chip running a firmware
that drives a communication module and ex-
posing the data access through a firmware spe-
cific (serial) interface. Drivers have been imple-
mented for all sorts of such devices and often
make use of the aforementioned embedded_hal
to be usable from any host device.

While serial protocols such as USB, RS232 or
i2C can be part of a HAL, data protocols like
AT[39] are implemented separately. Crates like
atat[40] transparently offer access to these pro-
tocols. Building on that, driver crates for pop-
ular networking modems are already available.
With IoT in mind, we can find drivers for cellu-
lar access[41] or short-range networks[42] that
connect to u-blox[43] devices. The drogue IoT
project [44] not only brings support for common
network standards like WiFi or LoRaWAN but
also abstracts these to a transparent network
interface, such that from Rust each of these net-
work gateways can be used the same way pro-
viding TCP/UDP sockets. Building on this net-
work abstraction the project also implements
an MQTT and HTTP client.

Notable Mentions

LoRaWAN[15] is known for its application as
the basis for IoT. Especially The Things Net-
work[45] plays a major role in pushing LoRa by
providing a shared infrastructure that is energy
efficient, yet reliant, open and secure. Inciden-
tally, crates to create clients to this network
already exist.

6

Leaving Microcontrollers
At this point, Rust’s support for microcon-
trollers was comprehensively presented… Al-
though a lot of the IoT is implemented on the
smallest of processors, often one has more re-
sources to spare. Devices that could be de-
scribed as “raspberry pi sized,” can run a sup-
ported operating system (e.g. GNU/Linux) on
a higher architecture, such as aarch64. Con-
sequently, they profit from full Rust-Support.
These offer more versatile tools and capabili-
ties to connect to complex technologies such
as Bluetooth, or processing greater amounts of
data, such as camera feeds.

Rust on the Edge
In recent years WebAssembly [46] (WASM) has
been growing as an OS-independent platform,
meant to run programs in web-browsers at near-
native speed in secure sandboxes. Rust as a lan-
guage has been pushing this development for-
ward, by language support and tooling. Not
only have the three biggest freestanding WASM
runtimes adopted Rust as their implement-
ing language[49], but also there have evolved
standard tools to integrate WASM into your
JavaScript Codebase [50] and library support
to narrow the gap between the Rust/WASM
world and the JavaScript runtime[51].

Companies like fastly and Cloudflare have de-
veloped services that facilitate this platform to
offer easy entrance to Edge Computing. Cloud-
flare Workers [52] offers the infrastructure for
reliable functions on the web that can act as an
ingress point for IoT devices. Workers run code
compiled to WebAssembly which makes them a
ready target for Rust.

Rust as a platform
In the previous section, a multitude of applica-
tions and capabilities of the Rust Language has
been presented. While the ecosystem is large,
it is important to also analyze it with an eye
on qualitative factors to come up with a con-
vincing conclusion about the usability of Rust
as a Platform for IoT today. As rust is still

evolving, many things will still improve. This
essay aims to summarize the current develop-
ments and make an educated guess where Rust
is heading.

Today
Rust is known for assessing its performance in
many areas publicly in the form of “are we X
yet” websites[54]. Unfortunately, for the do-
main of embedded/IoT, the community has not
yet started such a project. Yet, as that form has
proven very informative, this essay will adopt a
similar approach.

++ Rust has stable and mature support. You
can use Rust for this

+ Rust offers some support/development.
Think twice.

± Ideas are there but little has evolved from
it.

- Close to nothing has been developed. You
are on your own, not recommended to use
Rust here.

The good

In some regards, rust can already shine, al-
though it might need some polish in some
places. Especially the strong features of Rust,
tooling and performance, can shine too in the
IoT context.

Performance and Ergonomics (++) One
of the strongest points to make about Rust is
probably its performance. This does not mean
solely its runtime performance but also its de-
velopment process.

Rust is often hailed for the high-level elements
that make it look and act like a general-purpose
language in many regards. At the same time,
it embraces the concept of “Zero-Cost Abstrac-
tions” that let it produce highly optimized code
without accepting drawbacks on its high-level
features.

Yet in areas where every byte counts, with
rust one, has to trust on the optimizer to pro-
duce sufficiently small binaries. Which be-
comes harder given how easy it is to add de-

7

pendencies to a project. Projects exist to help
monitor the size of binaries but the main prob-
lem remains.

Looking at it in another way, given how high-
level rust can be, memory accesses are not as
obvious as they are with C. Clearly, this can
cause unexpected problems in performance, es-
pecially on microcontrollers with limited mem-
ory speeds.

Tools (++) Rust is known for its great tool-
ing. This doesn’t stop in the world of embedded
systems and IoT. For one, Rust is pioneering
the world of WebAssembly. Additionally, the
entry into Embedded systems is made greatly
easier given the rust tooling.

As we saw with the abstractions above, embed-
ded Rust does not exclude the possibility to use
cargo and its package management. In fact, it
even provides a measure to tell whether a li-
brary can run on embedded devices or not, pre-
cisely as long as it does not use the standard
library that is built on top of specific operating
systems. Such crates are marked as #[no_std].
It doesn’t stop there. We saw projects autom-
atizing the whole process of downloading bina-
ries and running/debugging them through stan-
dard cargo invocations that integrate well with
IDEs.

Of course, not everything is perfect in this re-
gard area yet. As a lot of Rust’s tooling is au-
tomatized, as a user one faces a rather high-
level view of the process. While this can be
desirable, it reduces the account one has to tell
what parts are causing errors. Also, due to ab-
straction over multiple interfaces, the function-
ality provided might be less than what would
theoretically be possible using those tools di-
rectly, at which point using Rust might become
more of a burden as configuring these tools to
fit Rust might not be trivial in every case.

A similar thing can be said about Rust for Edge
Computing using WebAssembly. We have seen
it as the driving language for modern runtimes
and offering rich library support[55]. As such
given its tools, it is easy to integrate them
into existing platforms or important in the do-

main of Edge Computing write high performant
workers in it.

Frameworks and Libraries (+) The pre-
sentation shed light on some of the most in-
fluential projects. While on the WASM front
Rust has already developed a mature environ-
ment. In the space of embedded devices, li-
braries while bringing support for many devices,
do not enjoy the same kinds of maturity and
maintenance.

The embedded-hal is a great leap toward a
unified API on microcontrollers and is already
heavily used. Yet, many projects have imple-
mented drivers independently or base on incom-
patible versions. Drivers are generally added
more as an implementation to tick the boxes
for a specific use case and therefore do usually
not cover the available functionality.

drogue-wifi for instance implements a driver
for the WiFi breakout board ESP8266. Yet,
while the target chip is capable of a whole range
of functionality, the driver only implements
a limited subset of that such that it fits the
drogue project. More extensive support would
be desirable to use rust more ergonomically and
ease the development.

The bad

As a comparatively young language, especially
compared to its contenders in the embedded
world, naturally, Rust has a set of drawbacks
mainly connected to its development pace and
lack of maturity and experience in the industry.

Documentation (+/±) Generally, Rust is
known for its great documentation. There is
even specialized tooling around it. Rustdoc[56]
is the standard tool to generate documentation
from rust source code. Docs.rs[57] adds to this
hosting documentation for the whole crates.io
index of packages. The fact that all documen-
tation is entangled this tightly is a major win
to the whole community and aids development
dramatically.

Rust has also evolved the mdBook[58] tool. It
is used throughout the rust community to as-

8

Table 1: Summary of Rust’s ecosystem today

Ecosystem element Maturity
Performance and Ergonomics ++
Tools ++
Frameworks and Libraries +
Documentation (Rust) +
Documentation (Libraries) ±
Stability ±
Framework Interoperability ±
Architecture Support (not ARM) -

well. RTIC[59] for example promises to provide
a framework that works concurrently by man-
aging interrupts and resources. Yet, it brings
in a very different way to set up projects that
complicate how to get started with the whole
system especially as examples are scarce here
too.

The ugly

Lastly, some tasks are so far virtually impossi-
ble to achieve with Rust or require a lot of work
to be invested by the user.

ARM (-) We have seen that on ARM Rust
offers great support. Indeed the stm32-rs
group, for example, tries to provide embedded-
has implementations for all chips manufactured
by STM. Other ARM vendors have similar
good support.

It is once one asks to write software for other
architectures. First, they are limited by sup-
port for these architectures of the LLVM back-
end. The popular IoT platform Arduino for
instance runs on AVR based chips which re-
quire a fork of LLVM to be programmed for
In Rust. Extensa, the architecture employed
by the ESP8266/ESP32 chips also requires ad-
ditional care. These reasons drive the current
disinterest in writing software for these chips
(as it is not possible or difficult) which in turn
affects the motivation to bring support for the
platforms to Rust in the first place.

In the future
Today, Rust’s ecosystem is not all roses. A lot
of things are missing still. Yet, observing the
community fundamental steps are being taken.
Looking at the future there are a few clear in-
dicators that Rust will become a growing influ-
ence for not and ubiquitous computing.

Rust Foundation

More generically, the advent of the Rust
Foundation [60] will eventually also bene-
fit the embedded section of the language.
With greater structural organization and back-
ing from industry-leading companies such as
Google and Amazon, Microsoft, Huawei and
Facebook, Rust manifests itself as a credible
choice.

Embedded-WG

The embedded working group has been men-
tioned throughout this essay. They have proven
themselves as the originators of remarkable
work that has brought rust a long way. Its
projects will for sure continue to improve the
experience of embedded development in Rust.

Ferrous

Ferrous Systems, the leading force behind the
excellent knurling project, is committed to fur-
ther invest in Rusts embedded future. Ferrous
already contributes to the Rust Open Source
community in many ways, and with knurling
still being a young project, its influence in the
embedded world is still to be expanded.

Libraries/Tools

Finally, with more companies and individuals
committing to Rust as their language of choice,
albeit its current pitfalls will eventually popu-
late the language with more helpful libraries
and tools. Especially, once fundamental li-
braries such as the embedded-hal a point of sta-
bility, libraries building on these are expected
to follow.

Taking into account WebAssembly, we see that

9

with its adoption in all major browsers and the
stabilization of its specification, WASM is there
to stay. Rust has been influencing its develop-
ment a lot until today

Conclusion
Throughout this essay, The domain of Ubiqui-
tous Computing and IoT has been described
in detail. Building on that the programming
language Rust has been closely examined on
its capabilities to fulfil the needs of this field.
We have seen which infrastructure drives Rust’s
support of embedded programming, how We-
bAssembly enables Rust to play a leading role
as a language to implement functions on the
Edge. Apart from this descriptive part, we put
the available ecosystem into perspective, point-
ing out its strengths and current weaknesses.

Finally, we can conclude that Rust is per-
fectly capable of doing specific tasks, in the
area of Embedded Computing and more so on
higher levels of the Internet of Things, such as
lightweight computing on the edge and the im-
plementation of backend services. Yet, it shows
that Rust is a fairly recent language. As such
parts of its ecosystem, relevant to IoT, are still
evolving, lack even some significant foundations
and are far from stable. For early adopters and
the generally curious Rust still offers the foun-
dations on which one can build their own so-
lutions, albeit without providing the maturity
of decades of development. On the bright side,
we see several companies like Drogue, Ferrous
Systems and other independent groups, doing
exactly that. Crucial foundations are in active
development and promise a brighter future for
Rust.

Condensing this essay into one sentence

Rust shows the potential to become
the IoT platform of choice in the fu-
ture, providing speed, ergonomics and
safety, but does not show the matu-
rity to be readily used as such without
thorough consideration.

References

[1] M. Weiser, “The Computer for the 21st
Century,” p. 8.

[2] A. Dey, J. Mankoff, G. Abowd, and S.
Carter, “Distributed mediation of am-
biguous context in aware environments,”
in Proceedings of the 15th annual ACM
symposium on User interface software
and technology, Oct. 2002, pp. 121–130.
doi: 10.1145/571985.572003.

[3] R. Poppe, R. Rienks, and B. van Dijk,
“Evaluating the Future of HCI: Chal-
lenges for the Evaluation of Emerg-
ing Applications,” in Artifical Intelli-
gence for Human Computing, 2007, pp.
234–250. doi: 10.1007/978-3-540-72348-
6_12.

[4] M. Sharma, R. Srivastava, A. Anand,
D. Prakash, and L. Kaligounder,
“Wearable motion sensor based phasic
analysis of tennis serve for performance
feedback,” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech
and Signal Processing (ICASSP),
Mar. 2017, pp. 5945–5949. doi:
10.1109/ICASSP.2017.7953297.

[5] T. Li, “You will soon be able to pay your
subway fare with your face in China,”
Mar. 13, 2019. https://www.scmp.c
om/tech/innovation/article/3001306
/you-can-soon-pay-your-subway-ride-
scanning-your-face-china (accessed May
04, 2021).

[6] “Use Siri on all your Apple devices.” ht
tps://support.apple.com/en-us/HT204
389 (accessed May 04, 2021).

[7] “Google Assistant.” https://developers
.google.com/assistant (accessed May 04,
2021).

10

https://doi.org/10.1145/571985.572003
https://doi.org/10.1007/978-3-540-72348-6_12
https://doi.org/10.1007/978-3-540-72348-6_12
https://doi.org/10.1109/ICASSP.2017.7953297
https://www.scmp.com/tech/innovation/article/3001306/you-can-soon-pay-your-subway-ride-scanning-your-face-china
https://www.scmp.com/tech/innovation/article/3001306/you-can-soon-pay-your-subway-ride-scanning-your-face-china
https://www.scmp.com/tech/innovation/article/3001306/you-can-soon-pay-your-subway-ride-scanning-your-face-china
https://www.scmp.com/tech/innovation/article/3001306/you-can-soon-pay-your-subway-ride-scanning-your-face-china
https://support.apple.com/en-us/HT204389
https://support.apple.com/en-us/HT204389
https://support.apple.com/en-us/HT204389
https://developers.google.com/assistant
https://developers.google.com/assistant

[8] C. Evers, R. Kniewel, K. Geihs,
and L. Schmidt, “The user in the
loop: Enabling user participation
for self-adaptive applications,” Future
Generation Computer Systems, vol.
34, pp. 110–123, May 2014, doi:
10.1016/j.future.2013.12.010.

[9] D. J. Cook, J. C. Augusto, and V. R.
Jakkula, “Ambient intelligence: Tech-
nologies, applications, and opportuni-
ties,” Pervasive and Mobile Computing,
vol. 5, no. 4, pp. 277–298, Aug. 2009,
doi: 10.1016/j.pmcj.2009.04.001.

[10] E. Eliasson, “Secure Internet Telephony:
Design, Implementation, and Perfor-
mance Measurements,” p. 80.

[11] A. N. Pisarchik, V. A. Maksimenko, and
A. E. Hramov, “From Novel Technol-
ogy to Novel Applications: Comment on
‘An Integrated Brain-Machine Interface
Platform With Thousands of Channels’
by Elon Musk and Neuralink,” Journal
of Medical Internet Research, vol. 21,
no. 10, p. e16356, Oct. 2019, doi:
10.2196/16356.

[12] I. Lee and K. Lee, “The Internet
of Things (IoT): Applications, invest-
ments, and challenges for enterprises,”
Business Horizons, vol. 58, no. 4,
pp. 431–440, Jul. 2015, doi:
10.1016/j.bushor.2015.03.008.

[13] S. Elhadi, A. Marzak, N. Sael, and S.
Merzouk, “Comparative Study of IoT
Protocols,” Social Science Research Net-
work, Rochester, NY, SSRN Scholarly
Paper ID 3186315, May 2018. doi:
10.2139/ssrn.3186315.

[14] F. Foukalas, P. Pop, F. Theoleyre, C.
A. Boano, and C. Buratti, “Dependable
Wireless Industrial IoT Networks: Re-
cent Advances and Open Challenges,”
in 2019 IEEE European Test Sympo-
sium (ETS), May 2019, pp. 1–10. doi:
10.1109/ETS.2019.8791551.

[15] “What Edge Computing Means for
Infrastructure and Operations Leaders.”
//www.gartner.com/smarterwithgartner/what-
edge-computing-means-for-
infrastructure-and-operations-leaders/
(accessed May 06, 2021).

[16] “Real-Time Distributed Computing at
Network Edges for Large Scale Indus-
trial IoT Networks.” https://ieeexplo
re.ieee.org/abstract/document/849579
7?casa_token=CHZD9tpi9_cAAAAA:
saG8dFLJX9KMntLMllGoBLn5JZWp
Os8cAv0sJu9oPZINmQ3qzV5ecEDQzB
yUTTupjNtl_MkOfRc (accessed May
04, 2021).

[17] J. Gubbi, R. Buyya, S. Marusic, and
M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements,
and future directions,” Future Genera-
tion Computer Systems, vol. 29, no.
7, pp. 1645–1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

[18] graydon, “Project Servo.” Available: ht
tp://venge.net/graydon/talks/intro-
talk-2.pdf

[19] “Quantum - MozillaWiki.” https://wi
ki.mozilla.org/Quantum (accessed May
13, 2021).

[20] “Rust/RELEASES.md at master · rust-
lang/rust.” https://github.com/rust-
lang/rust/blob/master/RELEASES.md
(accessed May 13, 2021).

[21] “Stack Overflow Developer Survey 2020.”
https://insights.stackoverflow.com/s
urvey/2020/?utm_source=social-shar
e&utm_medium=social&utm_campa
ign=dev-survey-2020 (accessed May 03,
2021).

[22] J. Goulding, “What is Rust and why is
it so popular?” Jan. 20, 2020. https:
//stackoverflow.blog/2020/01/20/what-
is-rust-and-why-is-it-so-popular/ (ac-
cessed May 13, 2021).

11

https://doi.org/10.1016/j.future.2013.12.010
https://doi.org/10.1016/j.pmcj.2009.04.001
https://doi.org/10.2196/16356
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.2139/ssrn.3186315
https://doi.org/10.1109/ETS.2019.8791551
https:////www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
https:////www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
https:////www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://ieeexplore.ieee.org/abstract/document/8495797?casa_token=CHZD9tpi9_cAAAAA:saG8dFLJX9KMntLMllGoBLn5JZWpOs8cAv0sJu9oPZINmQ3qzV5ecEDQzByUTTupjNtl_MkOfRc
https://doi.org/10.1016/j.future.2013.01.010
http://venge.net/graydon/talks/intro-talk-2.pdf
http://venge.net/graydon/talks/intro-talk-2.pdf
http://venge.net/graydon/talks/intro-talk-2.pdf
https://wiki.mozilla.org/Quantum
https://wiki.mozilla.org/Quantum
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/

[23] “Rust in the Linux kernel.” https://se
curity.googleblog.com/2021/04/rust-
in-linux-kernel.html (accessed May 04,
2021).

[24] “Introduction - Discovery.” https://do
cs.rust-embedded.org/discovery/ (ac-
cessed May 04, 2021).

[25] “External Tools - The Cargo Book.” ht
tps://doc.rust-lang.org/cargo/reference
/external-tools.html (accessed May 13,
2021).

[26] “Crates.io: Rust Package Registry.” http
s://crates.io/ (accessed May 05, 2021).

[27] corob-msft, “Overview of modules in
C++.” https://docs.microsoft.com/en-
us/cpp/cpp/modules-cpp (accessed May
05, 2021).

[28] “Npm.” https://www.npmjs.com/ (ac-
cessed May 05, 2021).

[29] “Who is the World’s Leading IoT Chip-
maker?” Sep. 13, 2020. https://www.
nanalyze.com/2020/09/worlds-leading-
iot-chipmaker/ (accessed May 05, 2021).

[30] “Platform Support - The rustc book.” ht
tps://doc.rust-lang.org/nightly/rustc/p
latform-support.html (accessed May 05,
2021).

[31] “Introduction - The rustup book.” https:
//rust-lang.github.io/rustup/ (accessed
May 06, 2021).

[32] Rust-embedded/cross. Rust Embedded,
2021. Accessed: May 13, 2021. [Online].
Available: https://github.com/rust-em
bedded/cross

[33] “Knurling-rs.” https://knurling.ferrous-
systems.com/ (accessed May 13, 2021).

[34] “Using GDB and defmt to debug em-
bedded programs.” https://ferrous-
systems.com/blog/gdb-and-defmt/ (ac-
cessed May 06, 2021).

[35] “SVD Description (*.svd) Format.” http
s://www.keil.com/pack/doc/CMSIS/
SVD/html/svd_Format_pg.html (ac-
cessed May 06, 2021).

[36] Rust-embedded/Svd2rust. Rust Embed-
ded, 2021. Accessed: May 13, 2021. [On-
line]. Available: https://github.com/r
ust-embedded/svd2rust

[37] “Embedded_hal - Rust.” https://docs.r
s/embedded-hal/0.2.5/embedded_hal/i
ndex.html (accessed May 06, 2021).

[38] “IEEE Standard for Information
technology–Telecommunications and
information exchange between systems
Local and metropolitan area network–
Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifica-
tions Amendment 5: Preassociation
Discovery,” IEEE Std 802.11aq-2018
(Amendment to IEEE Std 802.11-2016
as amended by IEEE Std 802.11ai-2016,
IEEE Std 802.11ah-2016, IEEE Std
802.11aj-2018, and IEEE Std 802.11ak-
2018), pp. 1–69, Aug. 2018, doi:
10.1109/IEEESTD.2018.8457463.

[39] “Hayes command set,” Wikipedia. May
04, 2021. Accessed: May 06, 2021. [On-
line]. Available: https://en.wikipedia.o
rg/w/index.php?title=Hayes_comma
nd_set&oldid=1021310741

[40] BlackbirdHQ/atat. Blackbird, 2021. Ac-
cessed: May 13, 2021. [Online]. Avail-
able: https://github.com/BlackbirdHQ
/atat

[41] BlackbirdHQ/ublox-cellular-rs. Black-
bird, 2021. Accessed: May 06, 2021.
[Online]. Available: https://github.c
om/BlackbirdHQ/ublox-cellular-rs

[42] BlackbirdHQ/ublox-short-range-rs.
Blackbird, 2021. Accessed: May 06,
2021. [Online]. Available: https :
//github.com/BlackbirdHQ/ublox-
short-range-rs

12

https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://docs.rust-embedded.org/discovery/
https://docs.rust-embedded.org/discovery/
https://doc.rust-lang.org/cargo/reference/external-tools.html
https://doc.rust-lang.org/cargo/reference/external-tools.html
https://doc.rust-lang.org/cargo/reference/external-tools.html
https://crates.io/
https://crates.io/
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp
https://www.npmjs.com/
https://www.nanalyze.com/2020/09/worlds-leading-iot-chipmaker/
https://www.nanalyze.com/2020/09/worlds-leading-iot-chipmaker/
https://www.nanalyze.com/2020/09/worlds-leading-iot-chipmaker/
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://rust-lang.github.io/rustup/
https://rust-lang.github.io/rustup/
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross
https://knurling.ferrous-systems.com/
https://knurling.ferrous-systems.com/
https://ferrous-systems.com/blog/gdb-and-defmt/
https://ferrous-systems.com/blog/gdb-and-defmt/
https://www.keil.com/pack/doc/CMSIS/SVD/html/svd_Format_pg.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/svd_Format_pg.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/svd_Format_pg.html
https://github.com/rust-embedded/svd2rust
https://github.com/rust-embedded/svd2rust
https://docs.rs/embedded-hal/0.2.5/embedded_hal/index.html
https://docs.rs/embedded-hal/0.2.5/embedded_hal/index.html
https://docs.rs/embedded-hal/0.2.5/embedded_hal/index.html
https://doi.org/10.1109/IEEESTD.2018.8457463
https://en.wikipedia.org/w/index.php?title=Hayes_command_set&oldid=1021310741
https://en.wikipedia.org/w/index.php?title=Hayes_command_set&oldid=1021310741
https://en.wikipedia.org/w/index.php?title=Hayes_command_set&oldid=1021310741
https://github.com/BlackbirdHQ/atat
https://github.com/BlackbirdHQ/atat
https://github.com/BlackbirdHQ/ublox-cellular-rs
https://github.com/BlackbirdHQ/ublox-cellular-rs
https://github.com/BlackbirdHQ/ublox-short-range-rs
https://github.com/BlackbirdHQ/ublox-short-range-rs
https://github.com/BlackbirdHQ/ublox-short-range-rs

[43] “U-blox.” https://www.u-blox.com/en
(accessed May 06, 2021).

[44] “Drogue IoT.” https://github.com/dro
gue-iot (accessed May 13, 2021).

[45] “The Things Network.” https://thething
snetwork.org/ (accessed May 06, 2021).

[46] “WebAssembly.” https://webassembly.
org/ (accessed May 10, 2021).

[47] Wasmerio/wasmer. Wasmer, 2021. Ac-
cessed: May 13, 2021. [Online]. Avail-
able: https://github.com/wasmerio/wa
smer

[48] Bytecodealliance/wasmtime. Bytecode
Alliance, 2021. Accessed: May 13, 2021.
[Online]. Available: https://github.com
/bytecodealliance/wasmtime

[49] Bytecodealliance/lucet. Bytecode Al-
liance, 2021. Accessed: May 13, 2021.
[Online]. Available: https://github.com
/bytecodealliance/lucet

[50] Rustwasm/wasm-pack. Rust and We-
bAssembly, 2021. Accessed: May 13,
2021. [Online]. Available: https://gi
thub.com/rustwasm/wasm-pack

[51] Rustwasm/wasm-bindgen. Rust and We-
bAssembly, 2021. Accessed: May 13,
2021. [Online]. Available: https://gi
thub.com/rustwasm/wasm-bindgen

[52] “Cloudflare Workers®.” https://work
ers.cloudflare.com/ (accessed May 10,
2021).

[53] “Areweyet - MozillaWiki.” https://wiki
.mozilla.org/Areweyet (accessed May
13, 2021).

[54] “Are we web yet? Yes, and it’s freaking
fast!” https://www.arewewebyet.org/
(accessed May 13, 2021).

[55] “WebAssembly » AWWY?” https://ww
w.arewewebyet.org/topics/webassembly
/ (accessed May 10, 2021).

[56] “What is rustdoc? - The rustdoc book.”
https://doc.rust-lang.org/rustdoc/ind
ex.html (accessed May 10, 2021).

[57] “Docs.rs.” https://docs.rs/ (accessed
May 10, 2021).

[58] “mdBook - mdBook Documentation.” ht
tps://rust-lang.github.io/mdBook/ (ac-
cessed May 10, 2021).

[59] “Preface - Real-Time Interrupt-driven
Concurrency.” https://rtic.rs/0.5/bo
ok/en/ (accessed May 10, 2021).

[60] “Laying the foundation for Rust’s future
| Rust Blog.” https://blog.rust-lang.o
rg/2020/08/18/laying-the-foundation-
for-rusts-future.html (accessed May 03,
2021).

13

https://www.u-blox.com/en
https://github.com/drogue-iot
https://github.com/drogue-iot
https://thethingsnetwork.org/
https://thethingsnetwork.org/
https://webassembly.org/
https://webassembly.org/
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/lucet
https://github.com/bytecodealliance/lucet
https://github.com/rustwasm/wasm-pack
https://github.com/rustwasm/wasm-pack
https://github.com/rustwasm/wasm-bindgen
https://github.com/rustwasm/wasm-bindgen
https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://wiki.mozilla.org/Areweyet
https://wiki.mozilla.org/Areweyet
https://www.arewewebyet.org/
https://www.arewewebyet.org/topics/webassembly/
https://www.arewewebyet.org/topics/webassembly/
https://www.arewewebyet.org/topics/webassembly/
https://doc.rust-lang.org/rustdoc/index.html
https://doc.rust-lang.org/rustdoc/index.html
https://docs.rs/
https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/
https://rtic.rs/0.5/book/en/
https://rtic.rs/0.5/book/en/
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html

	Introduction
	Ubiquitous Computing and IoT
	Introduction to the character of ubiquitous computing
	The Internet of Things

	Rust

	The Rust Ecosystem for IoT
	Rust on Microcontrollers
	Tools
	Abstraction layers
	Drivers
	Notable Mentions

	Leaving Microcontrollers
	Rust on the Edge

	Rust as a platform
	Today
	The good
	The bad
	The ugly

	In the future
	Rust Foundation
	Embedded-WG
	Ferrous
	Libraries/Tools

	Conclusion
	References

